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Langevin dynamics driven by random Wiener noise (‘‘white noise’’), and the
resulting Fokker–Planck equation and Boltzmann equilibria are fundamental to
the understanding of transport and relaxation. However, there is experimental
and theoretical evidence that the use of the Gaussian Wiener noise as an
underlying source of randomness in continuous time systems may not always be
appropriate or justified. Rather, models incorporating general Lévy noises,
should be adopted.In this work we study Langevin systems driven by general
Lévy, rather than Wiener, noises. Various issues are addressed, including: (i) the
evolution of the probability density function of the system’s state; (ii) the sys-
tem’s steady state behavior; and, (iii) the attainability of equilibria of the
Boltzmann type. Moreover, the issue of reverse engineering is introduced and
investigated. Namely: how to design a Langevin system, subject to a given Lévy
noise, that would yield a pre-specified ‘‘target’’ steady state behavior. Results
are complemented with a multitude of examples of Lévy driven Langevin
systems.

KEY WORDS: Langevin dynamics; Lévy noise; Fokker–Planck equation;
Boltzmann equilibria; reverse engineering.

1. INTRODUCTION

Langevin systems driven by a Gaussian (white) noise have been studied
extensively in the literature. These systems are governed by dynamics of the
type

X(dt)=−U −(X(t)) dt+sW(dt), (1)



where: (i) U − is the derivative of an external potential U; (ii) s is a positive
constant representing the noise amplitude; and, (iii) W=(W(t))t \ 0—
a Wiener process whose derivative, Ẇ, is the ‘‘white noise’’—is the
underlying source of randomness driving the system. One of the main tools
used to investigate the Langevin dynamics (1) is the Fokker–Planck equa-
tion which governs the evolution of the probability density function (pdf )
of the system’s state. (1–4)

The Wiener process however, is a special case within the family of
stochastic processes qualifying as natural models for random noise sources.
This is the family of Lévy processes, introduced and pioneered by Paul
Lévy (5–7) (see also refs. 8–17). The increments of a general Lévy process
satisfy two key properties: (i) they are stationary (shift invariant); and,
(ii) non-overlapping increments are independent. These features manifest
the intuitive meaning of ‘‘noise’’.

Wiener Noise vs Lévy Noise

One of the main features distinguishing the Gaussian Wiener process
from all other non-Gaussian Lévy processes is the continuity of its sample
paths: the trajectories of the Wiener process are continuous (though,
nowhere differentiable), whereas the trajectories of non-Gaussian Lévy
processes are purely discontinuous. In other words, in the Gaussian case
propagation is conducted continuously via diffusion, while in the non-
Gaussian cases propagation is conducted discontinuously and discretely via
jumps.

Another major distinction between the Wiener process and non-
Gaussian Lévy processes is intimately related to the issue of scale
invariance. As described above, a key property of Lévy processes is the
shift invariance of their increments. However, if we wish the noise model to
be invariant not only under shifts but also under changes of scale—that is,
if we wish the noise to be of a fractal nature—then an additional require-
ment of scale invariance is to be posed. It turns out that amongst the sub-
class of scale invariant Lévy processes, the Wiener process is the only one
with finite variance—all other scale invariant processes have infinite
variance. (8–11)

The special and unique features of the Wiener process—continuity of
sample paths, scale invariance, convergence of moments—allowed for the
development of powerful and tractable analytical tools, such as the
Fokker–Planck equation, the Feynman–Kac formula, and the celebrated
Ito calculus (18–21) (see also refs. 22–25). This, in turn, was one of the major
reasons turning the Wiener process to serve as a natural, if not almost
unique, choice for modeling random noise in continuous time systems.
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In recent years Lévy process have drawn much attention and
research. (26–40) On the one hand, numerous examples and evidence of non-
Gaussian noises have been discovered and documented in many ‘‘real-
world’’ complex systems. In fact, statistics of the Lévy type turned out to
be ubiquitous a phenomena empirically observed in various areas includ-
ing: physics (anomalous diffusion, turbulent flows, nonlinear Hamiltonian
dynamics (29, 34)), biology (heartbeats, (41) firing of neural networks (42)) seis-
mology (recordings of seismic activity (43)), electrical engineering (signal
processing (44–46)), and economics (financial time series (47–49)) (for further
examples see refs. 31, 36, and 39 and references therein). On the other
hand, the ruling paradigm of modeling noise in continuous time stochastic
systems as Gaussian, began to give way to the examination and incorpora-
tion of models driven by non-Gaussian noises.

Moreover, recently introduced kinetic equations with fractional space
and time derivatives have attracted attention as possible a tool for the
description of anomalous diffusion and relaxation phenomena. (35, 38, 40)

These fractional Fokker–Planck equations turn out to be the analytical
analog of the Fokker–Planck equation in cases where the source of ran-
domness is a non-Gaussian scale invariant continuous time noise. That is,
when we change the system’s underlying noise source from the Gaussian
Wiener process to non-Gaussian scale invariant Lévy processes, the
Fokker–Planck partial differential equation (governing the evolution of the
pdf of the system’s state) needs to be modified into a fractional equa-
tion—a partial differential equation containing non-integer derivatives. The
degree of the fractional derivative, as may be suspected, is tightly related to
the ‘‘fractal dimension’’ of the underlying scale invariant Lévy process. (8–11)

Lévy Driven Langevin Systems

Lévy driven Langevin systems are Langevin equations of the type (1),
where the driving Wiener process is replaced by a non-Gaussian Lévy
process. Namely, let X=(X(t))t \ 0 be a stochastic process governed by the
following dynamics

X(dt)= − f(X(t)) dtz
Drift

+ L(dt)z
Driver

, (2)

where: (i) − f=−U − is the system’s drift function, stemming from an
external potential U; and, (ii) L=(L(t))t \ 0 is a non-Gaussian Lévy process
serving as the underlying source of randomness driving the system.
Dynamics of the type (2) were explored in refs. 27, 30, 37, 38, and 40.

Note that the ‘‘drift’’ and the ‘‘driver’’ are of completely orthogonal
nature: the former being continuous, deterministic, and predictable, while
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the latter is discontinuous, random, and unpredictable. Note also that the
Langevin dynamics (2) could be regarded as a non-linear version of the
Orenstein–Uhlenbeck dynamics, (1) in which the drift function f is linear
(the potential is quadratic).

Two types of systems are of special interest—symmetric and subordi-
nate:

In symmetric systems, the stochastic process X is symmetric with
respect to the origin. That is, the potential U and the Lévy driver L are
symmetric (or, equivalently, the drift function f is anti-symmetric and the
Lévy driver L is symmetric).

In subordinate systems, the stochastic process X is non-negative
valued, i.e., the Langevin dynamics (2) take place on the non-negative half
line [0, .). In this case the drift function f is positive, and the Lévy driver
L is a Lévy subordinate, i.e., a Lévy process with non-negative increments
(or, in other words, a pure-jump Lévy process with positive jumps).

Subordinate Systems

Subordinate systems can be visualized as a model of particle motion
on the non-negative half line, where the particle is subjected to two ‘‘rival-
ing’’ forces acting simultaneously: (i) random ‘‘kicks’’—appearing at
random times, and of random magnitude—which are ‘‘kicking’’ the particle
towards .; and, (ii) a state-dependent deterministic drift pushing the par-
ticle towards the origin 0. The system’s stationary pdf emerges as a
‘‘compromise’’ between these two opposing forces.

Alternatively, subordinate systems can be visualized as a reservoir or
dam model: X representing the level of water in the reservoir, L represent-
ing the random rainfall, and f representing the deterministic pumping-out
intensity (dependent on the level of the water in the reservoir).

In this work we study the Langevin equation (2), driven by general
non-Gaussian Lévy noises, and focus on the following issues:

1. Evolution: What is the Fokker–Planck equation governing the
evolution of the pdf of the system’s state?

2. Steady state: In steady state, what is the connection between the
system’s drift function f, driving noise, and stationary pdf ?

3. Reverse engineering: Given a ‘‘target’’ pdf p, can we ‘‘tailor design’’
a drift function f so that the system’s stationary pdf would equal the desired
‘‘target’’ pdf p?
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4. Boltzmann equilibria: It is well know that in Wiener-driven
Langevin dynamics, i.e., in the Gaussian case (1), the system admits a
Boltzmann equilibrium. Namely, the system’s stationary pdf equals

c exp 3 −
2
s2 U(x)4 , (3)

where c is a normalizing constant, s is the noise amplitude, and U is the
external potential. Hence, the following question arises naturally: Are
Boltzmann-type equilibria still attainable when the Lévy driver is non-
Gaussian?

The paper is organized as follows; In Section 2 we describe, in detail,
the properties and structure of the driving (pure-jump, non-Gaussian) Lévy
process. In Section 3 the Langevin dynamics (2) are analyzed, and various
issues—the Fokker–Planck evolution equation, steady state, systems with
polynomial drift functions, and existence of Boltzmann-type equilibria
—are addressed. In Section 4 the issue of reverse engineering is inves-
tigated. We conclude, in Section 5, with a multitude of examples.

1.1. Notations

The following notations will be used throughout the paper:

Fourier transform: ĵ will denote the Fourier transform of a function j

(defined on the real line);

ĵ(w)=F
.

−.

exp {iwx} j(x) dx.

Laplace transform: j̃ will denote the Laplace transform of a non-
negative valued function j (defined on the non-negative half line);

j̃(w)=F
.

0
exp { − wx} j(x) dx; w \ 0.

Convolution: j1 f j2 will denotes the convolution of the functions
j1, j2 (defined on the real line);

(j1 f j2)(x)=F
.

−.

j1(x − y) j2(y) dy.
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Also, the symbol ’ will denote equality in distribution, and % will
denote asymptotic equivalence:

j1 % j2 (x Q l) Z lim
x Q l

j1(x)
j2(x)

=1,

for the functions j1, j2 (defined on the real line).
Finally, P(E) will denote the probability of an event E, and E[R] will

denote the expectation of a random variable R.

2. THE LÉVY DRIVER

2.1. The Fourier and Laplace Characteristics

Mathematically, the family of Lévy processes consists of all stochastic
processes with independent and stationary increments, which are continu-
ous in probability. A Lévy process L=(L(t))t \ 0 is characterized by it’s
spectral (Fourier) representation

E[exp {iwL(t)}]=exp{ − Y(w) · t}. (4)

The function Y is called the Fourier characteristic of the Lévy process
L (in the literature, Y is also referred to as the spectral characteristic, or
symbol, of the process L).

When L is a Lévy subordinate, i.e., a Lévy process with non-negative
increments, then it can be characterized, alternatively, by the Laplace
(rather that Fourier) representation

E[exp{ − wL(t)}]=exp{ − F(w) · t}; w \ 0. (5)

The function F is referred to as the Laplace characteristic of the Lévy
subordinate L.

2.2. Self Similar Lévy Processes

Amongst the Lévy family, the class of self similar processes is of
special importance. This class consists of all scale invariant (fractal) pro-
cesses. A Lévy process L=(L(t))t \ 0 is said to be self similar with exponent
a (or, in short, a-self similar) if the following condition holds: - positive
constant k > 0 the k-scaled process L (k)=(1

k L(kat))t \ 0 is equal, in distri-
bution, to the original process L. It turns out that:

(i) if L is symmetric then

Y(w)=a |w|a, (6)
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where a > 0 is the (noise) amplitude. The admissible values of the exponent
are 0 < a [ 2 (a=1 and a=2 yielding, respectively, the Cauchy and
Gaussian distributions).

(ii) if L is a subordinate then

F(w)=awa, (7)

where a > 0 is the (noise) amplitude. The admissible values of the exponent
are 0 < a < 1 (a=1

2 yielding the Lévy- 1
2 distribution).

2.3. Pure-Jump Lévy Processes and Poisson Superpositions

A pure-jump Lévy process can be viewed, formally, as a superposition
of a continuum of independent Poisson processes. Indeed:

If L is a Poisson process with jumps of size x0 and rate l0, then it is a
Lévy process and its Fourier characteristic is Y(w)=(1 − exp{iwx0}) l0. If
L is a superposition of N independent Poisson processes—process n,
n=1, 2,..., N, having jumps of size xn and rate ln—then, again, it is a Lévy
process and its Fourier characteristic is given by

Y(w)= C
N

n=1
(1 − exp{iwxn}) ln. (8)

Hence, passing from (8) to the continuum limit, where jumps of size x
occur at rate l(dx), we arrive at

Y(w)=F
.

−.

(1 − exp{iwx}) l(dx), (9)

pending on the convergence of the right hand side of (9).
The rate l( · )—henceforth referred to as the process’ jump measure—is

a measure on the real line. The jump measure might have an infinite total
mass—not due to divergence at |x| Q . but rather, due to a possible
divergence at |x| Q 0 (intuitively, large jumps can occur only rarely, but
tiny jumps may occur very frequently). The rigorous formalism of (9) is
provided by the celebrated Lévy–Khinchin formula. (8–11)

2.4. Compound Poisson Process

If the jump measure is finite, i.e., if >.

−. l(dx) < ., then L is a com-
pound Poisson process with rate r=>.

−. l(dx) and jump-size J distributed
according to the probability measure 1

r l(dx). Namely:

L(t)= C
N(rt)

n=1
Jn, (10)

Lévy-Driven Langevin Systems: Targeted Stochasticity 745



where: (i) N=(N(t))t \ 0 is a standard Poisson process (i.e., with rate 1); (ii)
{Jn}.

n=1 is the sequence of independent and identically distributed jumps
(with probability measure 1

r l(dx)); and (iii) The Poisson process and the
sequence of jumps are mutually independent.

The converse is also true: if (i)–(iii) above hold, then the process
L=(L(t))t \ 0 given by (10) is a Lévy process with jump measure
l(dx)=rP(J ¥ dx). Moreover:

Y(w)=r(1 − E[exp{iwJ}]), (11)

and, in the case of non-negative jumps (implying that L is a subordinate):

F(w)=r(1 − E[exp{ − wJ}]). (12)

2.5. Examples

We mention a few examples:

1. If l(dx)=ca · |x|−(1+a) dx, where 0 < a < 2 and ca is an appropri-
ately chosen normalizing constant, then L is a symmetric a-self similar
Lévy process with unit amplitude (Y(w)=|w|a).

2. If l(dx)=ca · x−(1+a) dx, x > 0, where 0 < a < 1 and ca is an
appropriately chosen normalizing constant, then L is an a-self similar Lévy
subordinate with unit amplitude (F(w)=wa).

3. If l(dx)=exp{ − m |x|}
|x| dx, where m > 0, then Y(w)=ln(1+(w

m)2).

4. If l(dx)=exp{ − mx}
x dx, x > 0, where m > 0, then L is a Gamma

subordinate, i.e., its increments obey the Gamma distribution. This subor-
dinate is characterized by F(w)=ln(1+w

m).

5. If l(dx)=r
p (1+x2)−1 dx, where r > 0, then L is a compound

Poisson process with rate r and Cauchy jumps.

6. If l(dx)=rm exp{ − mx} dx, x > 0, where r, m > 0, then L is a
compound Poisson subordinate with rate r and exponential jumps.

2.6. Finite Jump Rate vs Finite Variance

From the examples it should be evident that the issue of a finite jump
measure and the issue of a finite variance of the Lévy process are separate
and unrelated. The finiteness of the jump measure depends on its integra-
bility at |x| Q 0, whereas the converges of variance depends on the
integrability of x2l(dx) at |x| Q .. Hence a Lévy process could be a com-
pound Poisson process with an infinite variance, e.g., when the jumps are
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Cauchy (example 5 above), and it can be a process with infinite jump
measure but with a finite variance, e.g., the Gamma process (example 4
above).

2.7. The Tail Function

Given a pure-jump Lévy process L with jump measure l( · ), we define
the process’ tail function L to be:

L(x)=˛F
.

x
l(du) x > 0

− F
x

−.

l(du) x < 0.

(13)

If L is a subordinate process then L(x)=>.

x l(du), x > 0.
The tail function and the Fourier and Laplace characteristics of L are

related to each other via

Y(w)=−iwL̂(w), (14)

and, in the subordinate case, via

F(w)=wL̃(w). (15)

The proofs of (14) and (15) are given in the appendix.

3. ANALYSIS OF THE LANGEVIN SYSTEM

3.1. The Infinitesimal Generator

The infinitesimal generator, A, of the Langevin system (2) is given by

(Aj)(x)= − f(x) j −(x)z
(Dj)(x)

+ F
.

−.

{j(x+y) − j(x)} l(dy)
z

(Jj)(x)

, (16)

-j ¥ D(A), where D(A) denotes the domain of the operator A.
The differential operator D stems from the continuous and determi-

nistic drift of the dynamics (2), whereas the integral operator J arises from
the discontinuous and random jumps of the Lévy driver L.
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3.2. The Fokker–Planck Equation

Let P(t, · ), t \ 0, denote the pdf of X(t)—the system’s state at time t
(that is; P(X(t) ¥ dx)=P(t, x) dx). The evolution of (P(t, · ))t \ 0 is given by

“P
“t

=AgP, (17)

where Ag is the adjoint operator of the infinitesimal generator A.

Theorem 1. The adjoint operator, Ag, of the infinitesimal generator
A is given by

Agp=
“

“x
(f · p − L f p), (18)

- pdf p.

(See the appendix for the proof of theorem 1)
Combining (17) and (18) together yields the Fokker–Planck equation

for the dynamics (2):

“P
“t

=
“

“x
(f · P − L f P). (19)

It is illuminating to compare (19) with the Fokker–Planck equation of
the Wiener-driven Langevin dynamics (1): (1, 3)

“P
“t

=
“

“x
1f · P −

s2

2
“P
“x

2 . (20)

The second order differential operator s
2

2
“

2

“x2 ( · ) in the Fokker–Planck
equation, stemming from the Gaussian driver sW, is replaced by the
integro-differential operator “

“x (L f ( · )) arising from the pure-jump Lévy
driver L. Alternatively, the differential ‘‘flux operator’’ (f · − s

2

2
“

“x)( · ) in the
Gaussian case is replaced by the integral ‘‘flux operator’’ (f · − L f)( · ) in
the non-Gaussian Lévy case.

It is also interesting to note that when the driver is an a-self similar
Lévy process (0 < a < 2) then the integro-differential operator “

“x (L f ( · )) is
equivalent to the fractional derivative “

a

“xa ( · ) used in refs. 38 and 40.

3.3. Stationarity

A pdf p is said to be a stationary pdf for the stochastic system
(X(t))t \ 0 if and only if X(0) ’ p S X(t) ’ p -t > 0.

748 Eliazar and Klafter



Theorem 2. A probability density function p is a stationary density
function for the Langevin system (2) if and only if

f · p=L f p. (21)

(See the appendix for the proof of theorem 2)
Since (L f p5 )(w)=L̂(w) · p̂(w)=−Y(w)

iw · p̂(w), transforming to Fourier
domain implies that (21) is equivalent to

fp5(w)
p̂(w)

+
Y(w)

iw
=0, (22)

and, in the symmetric case, to

>.

0 (fp)(x) sin(wx) dx
>.

0 p(x) cos(wx) dx
=

Y(w)
w

. (23)

In the subordinate case (L f p6 )(w)=L̃(w) · p̃(w)=F(w)
w · p̃(w). Hence

transforming to Laplace domain implies that (21) is equivalent to

fp5(w)
p̃(w)

=
F(w)

w
. (24)

It should be noted that Eq. (22) enables us to estimate the Fourier
characteristic Y of the system’s noise. Noise estimation is of interest in
cases where the system’s noise is ‘‘internal’’ and unobservable, but where
the system’s drift function f is known. Indeed, monitoring the system’s
state (X(t))t \ 0 one can obtain an empirical stationary pdf, and using (22)
one can hence estimate the Fourier characteristic Y of the unobservable
Lévy driver L.

3.4. Polynomial Drift Functions

When the drift function f is a polynomial, the Fourier and Laplace
transforms of the stationary pdf p satisfy linear ordinary differential equa-
tions (ODEs), as the following propositions assert:

Symmetric Case

Proposition 3. In a symmetric system the following statements are
equivalent:
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(i) The drift function is a polynomial

f(x)= C
N

n=1
cn · x2n − 1. (25)

(ii) The Fourier transform of the stationary pdf satisfies the linear
ODE

C
N

n=1
cn(−1)n ·

“
2n − 1

“w2n − 1 p̂(w)=
Y(w)

w
· p̂(w). (26)

Proof. In the symmetric case p̂(w)=2 >.

0 p(x) cos(wx) dx and
hence, - integer n;

(−1)n ·
“

2n − 1

“w2n − 1 p̂(w)=2 F
.

0
x2n − 1p(x) sin(wx) dx, (27)

which, in turn, implies that

C
N

n=1
cn(−1)n ·

“
2n − 1

“w2n − 1 p̂(w)=2 F
.

0

1 C
N

n=1
cn · x2n − 12 p(x) sin(wx) dx. (28)

Combining (28) and (23) together implies that (25) and (26) are equi-
valent. L

Subordinate Case

Proposition 4. In a subordinate system the following statements are
equivalent:

(i) The drift function is a polynomial

f(x)= C
N

n=1
cn · xn. (29)

(ii) The Laplace transform of the stationary pdf satisfies the linear
ODE

C
N

n=1
cn(−1)n ·

“
n

“wn p̃(w)=
F(w)

w
· p̃(w). (30)
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Proof. In the subordinate case p̃(w)=>.

0 p(x) exp{ − wx} dx and
hence, - integer n;

(−1)n ·
“

n

“wn p̃(w)=F
.

0
xnp(x) exp{ − wx} dx, (31)

which, in turn, implies that

C
N

n=1
cn(−1)n ·

“
n

“wn p̃(w)=F
.

0

1 C
N

n=1
cn · xn2 p(x) exp{ − wx} dx. (32)

Combining (32) and (24) implies that (29) and (30) are equivalent. L

Propositions 3 and 4 transform the, rather difficult, convolution
equation (21) to the, simpler and more tractable, linear ODEs (26)
and (30).

When the drift function is linear, i.e., when the dynamics are of the
Orenstein–Uhlenbeck type, (1) the resulting equations (26) and (30) are first
order linear ODEs, and their explicit solutions are easily computed. Indeed,
if f(x)=ax (a > 0) then

p̂(w)=exp 3 −
1
a

F
|w|

0

Y(sign(w) · u)
u

du4 , (33)

in the symmetric case, and

p̃(w)=exp 3 −
1
a

F
w

0

F(u)
u

du4 , (34)

in the subordinate case.
It should be noted that an alternative derivation of (33) and (34) can

be obtained via a direct analysis of the linear Orenstein–Uhlenbeck equa-
tion X(dt)=−aX(t) dt+L(dt).

3.5. Boltzmann-Type Equilibria

As for the existence of Boltzmann-type equilibria—the following
proposition excludes their possibility in Lévy driven Langevin systems:

Proposition 5. Boltzmann-type equilibria in the Langevin system
(2) are non-attainable when the Lévy driver is purely non-Gaussian.
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Proof. Assume that the stationary pdf p of the Langevin system (2)
is of a Boltzmann-type, i.e., that it is of the form

p(x)=c exp3 −
1
k

U(x)4 , (35)

where c is a normalizing constant, k is some positive constant, and U is the
potential ( − f=−U −).

Differentiating (35), p −=p · ( − 1
k U −)=−1

k · (f · p), gives − k · p −=f · p.
Hence, fp5(w)=−k · p −5(w)=k · iwp1(w), which, in turn, yields

fp5(w)
p̂(w)

=k · iw. (36)

Substituting (36) into (22) we obtain

Y(w)=k · w2. (37)

However, (37) implies that L=`2k · W where W=(W(t))t \ 0 is a Wiener
process—in strict contradiction to the non-Gaussianity of the Lévy
driver! L

4. REVERSE ENGINEERING

4.1. Reverse Engineering and System Reconstruction

The drift function f is easily extracted out of Eq. (21) giving

f=
L f p

p
. (38)

In the symmetric case (38) becomes

f(x)=F
.

0
L(u)

p(x − u) − p(x+u)
p(x)

du, (39)

and, in the subordinate case,

f(x)=F
x

0
L(u)

p(x − u)
p(x)

du. (40)

Formula (38) is of major importance, since it enables us to either
reverse engineer or reconstruct the system:
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Reverse engineering: Given a ‘‘target’’ pdf p, formula (38) hands us the
drift function that would yield a stationary pdf equaling p. In other words,
(38) tells us how to ‘‘tailor-design’’ the system (—the drift function f ) in
order to obtain a pre-specified ‘target’ stationary behavior (—the pdf p).

Reconstruction: Having a ‘‘black-box’’ system—a system whose evolu-
tion we monitor, but do not know its ‘‘internal mechanism,’’ i.e., its drift
function f—formula (38) enables us to perform system reconstruction.
That is, (38) tells us how to reconstruct the unknown drift function f from
the observed system states. Indeed, monitoring the system’s state (X(t))t \ 0

one can obtain an empirical stationary pdf, and using (38) one can there-
fore estimate the system’s drift function f.

Henceforth, we will focus on the issue of reverse engineering.

Noise Confinement
The reverse engineering formula is also a ‘‘recipe’’ for the confinement

of noise. When designing a system, it is often desired to design it so that its
output randomness, i.e., the randomness of its stationary pdf, is smaller
than the randomness of its driving noise. By ‘‘randomness’’ of a pdf we
mean the heaviness of its tails: the heavier the tails—the more ‘‘wild’’ and
random the distribution, the lighter the tails—the more ‘‘tamed’’ is the dis-
tribution. In other words, noise confinement makes the tails steeper. This
turns out to be a straightforward task using the reverse engineering
formula: simply set the ‘‘target’’ pdf to have the required light tails—the
obtained drift function will yield the desired noise confinement.

4.2. Fourier and Laplace Representations

The hard part of the reverse engineering procedure lies in the compu-
tation of the convolution g=L f p. The Fourier transform of g, however,
is easily calculated:

ĝ(w)=−
Y(w)

iw
· p̂(w). (41)

In the symmetric case (41) reduces to:

F
.

0
g(x) sin(wx) dx=

Y(w)
2w

· p̂(w), (42)

or, alternatively (using the Fourier inversion formula);

g(x)=
1
p

F
.

0

Y(w)
w

p̂(w) sin(wx) dw, (43)
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and hence, also

f(x)=
>.

0
Y(w)

w p̂(w) sin(wx) dw

>.

0 p̂(w) cos(wx) dw
. (44)

In the subordinate case, the Laplace transform of g is given by

g̃(w)=
F(w)

w
· p̃(w). (45)

4.3. Self Similar Noise

When the Lévy driver is self similar, the use of Tauberian theorems (50)

leads to explicit asymptotic formulae for the reverse-engineered drift func-
tions:

Symmetric Case

Proposition 6. Assume a symmetric system driven by an a-self
similar noise with amplitude a, i.e., Y(w)=a |w|a, where a > 0 and
0 < a < 2, a ] 1. Then, the asymptotics of the reverse-engineered drift
function yielding stationary pdf p are given by

f(x) % ca ·
a

|x|a p(x)
(|x| Q .), (46)

where ca=(1 − a)/2C(2 − a) cos(p
2 a).

Proof. By (42) we have

F
.

0
g(x) sin(wx) dx=

a
2

wa − 1 · p̂(w) %
a
2

wa − 1 (w Q +0). (47)

Hence, if 0 < a < 1, then, by Pitman’s Tauberian theorem (see ref. 50,
Thm. 4.10.3)

g(x) % c1
a
xa

(x Q .), (48)

where c1=1/2C(1 − a) cos(p
2 a).

If 1 < a < 2 then differentiating (47) gives

F
.

0
xg(x) cos(wx) dx %

a(a − 1)
2

w (a − 1) − 1 (x Q .), (49)
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and again, using Pitman’s Tauberian theorem,

g(x) % c2
a
xa

(x Q .), (50)

where c2=(a − 1)/2C(2 − a) sin(p
2 (a − 1)).

Since c1=c2=(1 − a)/2C(2 − a) cos(p
2 a), (48) and (50) yield (46). L

It is shown in ref. 40, using fractional calculus methodology, that if: (i)
the drift function is given by f(x)=x2N+1 (N being an integer); and, (ii) the
driving Lévy process is a symmetric a-self similar noise with exponent
1 [ a < 2; then

p(x) % c ·
1

|x|a+2N+1 (|x| Q .). (51)

Proposition 6 confirms (51) ‘‘coming the other way around’’ via the reverse
engineering route.

Subordinate Case

Proposition 7. Assume a subordinate system driven by an a-self
similar noise with amplitude a, i.e., Y(w)=awa, where a > 0 and 0 < a < 1.
Then, the asymptotics of the reverse-engineered drift function yielding sta-
tionary pdf p are given by

f(x) %
1

C(1 − a)
·

a
xap(x)

(x Q .). (52)

Proof. By (45) we have

g̃(w)=
F(w)

w
· p̃(w) % aw−(1 − a) (w Q +0). (53)

Hence, by Karamata’s Tauberian theorem (see ref. 50, Thm. 1.7.1);

G(x) %
a

C(2 − a)
· x1 − a (x Q .), (54)

where G is the primitive of g (G −=g). This implies that

g(x) %
a

C(1 − a) xa
(x Q .), (55)

which, in turn, implies (52). L
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4.4. Compound Poisson Noise with Heavy-Tailed Jumps

Analogous to the previous subsection, the use of Tauberian theorems
leads to explicit asymptotic formulae for the reverse engineered drift func-
tions also when the Lévy driver is a compound Poisson process with heavy-
tailed jumps:

Symmetric Case

Proposition 8. Assume a symmetric system driven by a compound
Poisson noise with rate r and heavy tailed jumps P(J > x) % ax−a (x Q .),
where a > 0 and 0 < a < 2, a ] 1. Then, the asymptotics of the reverse-
engineered drift function yielding stationary pdf p are given by

f(x) %
ra

|x|a p(x)
(|x| Q .). (56)

Proof. Since P(J > x) % ax−a (x Q .), Pitman’s Tauberian theorem
for random variables (see ref. 50, Thm. 8.1.10) implies that

1 − E[exp{iwJ}] % a
p

C(a) sin(p
2 a)

· wa (w Q +0). (57)

Hence, since Y(w)=r(1 − E[exp {iwJ}]) (recall (11)), plugging (57) into
(42) yields

F
.

0
g(x) sin(wx) dx % ra

p

2C(a) sin(p
2 a)

· wa − 1 (w Q +0). (58)

Now;

(i) If 0 < a < 1 then, by Pitman’s Tauberian (see ref. 50, Thm. 4.10.3),
(58) is equivalent to

g(x) %
ra
xa

(x Q .). (59)

(ii) If 1 < a < 2 then differentiating (58) gives

F
.

0
xg(x) cos(wx) dx % ra

p

2C(a − 1) cos (p
2 (a − 1))

· w (a − 1) − 1 (w Q +0),
(60)
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and, again, by Pitman’s Tauberian, (60) is equivalent to

g(x) %
ra
xa

(x Q .). (61)

Finally, (59) and (61) yield (56). L

Subordinate Case

Proposition 9. Assume a subordinate system driven by a com-
pound Poisson noise with rate r and heavy tailed jumps P(J > x) % ax−a

(x Q .), where 0 < a < 1. Then, the asymptotics of the reverse-engineered
drift function yielding stationary pdf p are given by

f(x) %
ra

xap(x)
(x Q .). (62)

Proof. Since P(J > x) % ax−a (x Q .), Karamata’s Tauberian
theorem for random variables (see ref. 50, Thm. 8.1.7) implies that

1 − E[exp{ − wJ}] % aC(1 − a) · wa (w Q +0). (63)

Hence, since F(w)=r(1 − E[exp{ − wJ}]) (recall (12)), plugging (63) into
(45) yields

g̃(w) % raC(1 − a) · w−(1 − a) (w Q +0). (64)

Now; by Karamata’s Tauberian theorem (see ref. 50, Thm. 1.7.1), (64)
implies that

G(x) %
ra

1 − a
· x1 − a (x Q .), (65)

where G is the primitive of g (G −=g). This, in turn, implies that

g(x) %
ra
xa

(x Q .), (66)

from which (62) follows. L
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4.5. Subordinate Systems: Exponential Equilibria

When an exponential stationary behavior is set as the ‘‘target’’ pdf of a
subordinate system, i.e., when

p(x)=m · exp{ − mx}, (67)

(x > 0; m > 0), then the reverse engineering formula (38) admits a simple
and explicit form:

Proposition 10. Assume a subordinate system. The system’s sta-
tionary distribution is exponential (with parameter m) if and only if the
drift function f is given by

f(x)=F
x

0
L(u) exp{mu} du. (68)

Moreover, if limx Q . L(x) exp{mx}=. and limx Q . l(x)/L(x)=l < m

then the asymptotics of the reverse-engineered drift function f are given by

f(x) %
1

m − l
L(x) exp{mx} (x Q .). (69)

Proof. (68) follows immediately from (40). L’Hospital’s rule gives
(69). L

We mention a few examples of jump measures satisfying the asympto-
tic conditions posed in the second part of Proposition 10:

1. If L(x) % ax−a (x Q .; a, a > 0) then l=0.

2. If L(x) % exp{ − gx} xn (x Q .; g > 0) then l=g.

3. If L(x) % exp{ − gxc} xn (x Q .; g > 0, 0 < c < 1) then l=0.

5. EXAMPLES

5.1. Symmetric Systems Driven by Cauchy Noise

When the driving noise is a Cauchy process with amplitude a, i.e.,
Y(w)=a |w|, then Y(w)

w =a · sign(w). This implies that in symmetric systems
results regarding reverse engineering and computation of the stationary pdf
obtain a special form. Indeed;
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Reverse Engineering

The reverse engineering formula (44) becomes:

f(x)=a ·
>.

0 p̂(w) sin(wx) dw

>.

0 p̂(w) cos(wx) dw
. (70)

Polynomial Drift

The system’s drift function is given by the polynomial f(x)=
;N

n=1 cn · x2n − 1 if and only if the system’s stationary pdf, p̂, satisfies the
linear ODE with constant coefficients:

C
N

n=1
cn(−1)n ·

“
2n − 1

“w2n − 1 p̂(w)=a · p̂(w). (71)

5.2. Reverse Engineering: Symmetric Systems Driven by Self

Similar Noise

Assume a symmetric system driven by an a-self similar noise with
amplitude a, i.e., Y(w)=a |w|a, 0 < a < 2. In this subsection we wish to
address the following reverse engineering question:

How should we reverse engineer the system so that to obtain a b-self
similar stationary Lévy pdf with amplitude b, i.e., p̂(w)=exp{ − b |w|b},
0 < b < 2?

Using (44) and some basic calculus, we obtain

f(x)=
a

bb
x ·

>.

0 exp{ − bwb} wa − 1 sin(wx) dw

>.

0 exp{ − bwb} wb − 1 sin(wx) dw
, (72)

or, equivalently;

f(x)=
a

bb
x1+b − a ·

>.

0 exp{ − b(u
x)

b} ua − 1 sin(u) du
>.

0 exp{ − b(u
x)

b} ub − 1 sin(u) du
. (73)

In particular, when a=b then the drift is linear

f(x)=
a

bb
x,

and we obtain linear dynamics of the Orenstein–Uhlenbeck type. (1)
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Cauchy Targets

In the special case where the ‘‘target’’ pdf is Cauchy (that is; b=1)
then the following tractable and closed form formula is obtained:

f(x)=ab1 − aC(a) ·1=1+1x
b
2222 − a

· sin 1a arc tan 1x
b
22 . (74)

The asymptotics of (74) are given by

f(x) % ˛
a
ba

aC(a) · x x Q 0

a
b

C(a) sin 1p

2
a2 · x2 − a x Q ..

(75)

Hence, as x Q .: (i) if a < 1 then f(x) % c · xp with p > 1 (asymptotically
convex drift); (ii) if a > 1 then f(x) % c · xp with p < 1 (asymptotically
concave drift); (iii) if b=a then f(x)= a

bb x (linear drift).

5.3. Reverse Engineering: Subordinate Systems Driven by Self

Similar Noise

In this subsection we investigate subordinate systems driven by an
a-self similar noise. Namely, we assume that the jump measure is given by
l(dx)=a · x−(1+a) dx, x > 0, and hence L(x)=x−a, x > 0. Using

(L f p)(x)=F
x

0

p(x − u)
ua

du=F
x

0

p(u)
(x − u)a

du,

together with some basic integration techniques, we obtain the following
reverse engineering examples:

Pareto Equilibria

The system’s stationary distribution is Pareto(b) (b > 0) i.e.

p(x)=
b

(1+x)1+b
,

if and only if the drift function f is given by

f(x)=(1+x)1 − a · F
x

0

(1+u)a+b − 1

ua
du. (76)
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The asymptotic behavior of the drift function (76) is given by

f(x) % ˛
1

1 − a
x1 − a x Q 0

1
b

x1+b − a x Q ..

Hence, as x Q .: (i) if b < a then f(x) % 1
b xp with p < 1 (asymptotically

concave drift); (ii) if b > a then f(x) % 1
b xp with p > 1 (asymptotically

convex drift); (iii) if b=a then f(x) % 1
b x (asymptotically linear drift).

In the special case b=N+1 − a, N being a non-negative integer, the
drift function (76) becomes

f(x)=(x(1+x))1 − a · C
N

n=0

1N
n
2 xn

n+1 − a
. (77)

Exponential Equilibria
The system’s stationary distribution is Exp(m) (m > 0), i.e.

p(x)=m · exp{ − mx},

if and only if the drift function f is given by

f(x)=F
x

0

exp{mu}
ua

du. (78)

The asymptotic behavior of the drift function is given by

f(x) % ˛
1

1 − a
x1 − a x Q 0

1
m

x−a exp{mx} x Q ..

Gamma Equilibria
The system’s stationary distribution is Gamma(m, n) (m, n > 0), i.e.

p(x)=
mn

C(n)
exp{ − mx} · xn − 1,

if and only if the drift function f is given by

f(x)=x1 − a · C(n) C
.

n=0

C(1 − a+n)
C(n+1 − a+n)

·
(mx)n

n!
. (79)
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In particular, when n=1 (that is, when the system’s stationary distribution
is Exp(m)) then

f(x)=x1 − a · C
.

n=0

1
1 − a+n

·
(mx)n

n!
, (80)

which is the power expansion of (78).

Generalized Lévy-1/2 Equilibria

The system’s stationary distribution is of the type (m, b > 0):

p(x)=
mb

C(b)
·
exp{ − m

x}
x1+b

,

if and only if the drift function f is given by

f(x)=x1 − a · F
.

0
exp 3 −1m

x
2 u4 (1+u)a+b − 1

ua
du. (81)

In the special case b=N+1 − a, N being a non-negative integer, the drift
function (81) becomes

f(x)=
x2(1 − a)

m1 − a
· C

N

n=0

1N
n
2 C(n+1 − a) 1x

m
2n

. (82)

In particular, when a=1
2=b the drift function is linear

f(x)=
`p

`m
· x.

and we obtain linear dynamics of the Orenstein–Uhlenbeck type. (1)

Generalized Weibull Equilibria

The system’s stationary distribution is of the type (c, m, n > 0):

p(x)=
cmn

C(n
c)

exp{ − (mx)c} · xn − 1,

if and only if the drift function f is given by

f(x)=C(1 − a) · x1 − a · g((mx)c), (83)
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where

g(y)=exp(y) · C
.

n=0

C(1+n+cn)
C((1+n+cn)+(1 − a))

·
( − y)n

n!
. (84)

5.4. Reverse Engineering: Subordinate Systems Driven by

a Compound Poisson Noise

Assume a subordinate system driven by a Lévy subordinate process
with jump measure

l(dx)=exp{ − mx} · xN − 1 dx,

where m is a positive constant and N is an integer.
Since >.

0 l(dx)=(N − 1)!/mN, the driver is a compound Poisson with
rate r=(N − 1)!/mN and Gamma-distributed jumps: J ’ Gamma(m, N)
(equivalently, the jump size J equals, in distribution, a sum of N indepen-
dent exponential random variables, each distributed Exp(m)).

Using the reverse engineering formula together with some basic inte-
gration techniques, we obtain the following examples:

Exponential Equilibria

The system’s stationary distribution is Exp(m) if and only if the drift
function f is given by the polynomial

f(x)=
(N − 1)!

mN+1 · C
N

n=1

(mx)n

n!
. (85)

Gamma Equilibria

The system’s stationary distribution is Gamma(m, n) if and only if the
drift function f is given by the polynomial

f(x)=x ·
(N − 1)!

mN · C
N − 1

n=0

(mx)n

n(n+1)(n+2) · · · (n+n)
. (86)

In particular, if N=1 (that is, if the jump size is exponential:
J ’ Exp(m)) then the polynomial drift (86) reduces to the linear drift

f(x)=
1

nm
· x.

and we obtain linear dynamics of the Orenstein–Uhlenbeck type. (1)
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6. APPENDIX

Lemma 11. The tail function and the Fourier and Laplace charac-
teristic of a pure-jump Lévy process L are related to each other via
Y(w)=−iwL̂(w), and, in the subordinate case, via F(w)=wL̃(w).

Proof. General case:

−
Y(w)

iw
= − F

.

−.

1 − exp{iwy}
iw

l(dy)

= − F
0

−.

1 − exp{iwy}
iw

l(dy)+F
.

0

exp{iwy} − 1
iw

l(dy)

= − F
0

−.

1F
0

y
exp{iwx} dx2 l(dy)+F

.

0

1F
y

0
exp{iwx} dx2 l(dy)

=F
0

−.

exp{iwx} 1 − F
x

−.

l(dy)2 dx+F
.

0
exp{iwx} 1F

.

x
l(dy)2 dx

=F
.

−.

exp{iwx} L(x) dx

=L̂(w).

Subordinate case:

Y(w)
w

=F
.

0

1 − exp{ − wy}
w

l(dy)

=F
.

0

1F
y

0
exp { − wx} dx2 l(dy)

=F
.

0
exp{ − wx} 1F

.

x
l(dy)2 dx

=F
.

0
exp{ − wx} L(x) dx

=L̃(w). L
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6.1. Proof of the ‘‘Key Theorems’’ 1 and 2

Proof. Throughout the proof Oj1, j2P will denote the inner product
of the functions j1, j2 (defined on the real line);

Oj1, j2P=F
.

−.

j1(u) j2(u) du.

We fix an exponential function j(x)=exp{iwx}, a pdf p, and divide
the proof into four steps.

Step 1. The differential part of A;
Using the Fourier inversion formula for the drift function f we have

(Dj)(x)= − f(x) j −(x)

= −1 1
2p

F
.

−.

exp{ − iux} f̂(u) du2 · (iw exp{iwx})

= −
iw
2p

F
.

−.

exp{i(w − u) x} f̂(u) du, (87)

and hence, using basic Fourier analysis, we obtain

ODj, pP= −
iw
2p

F
.

−.

p̂(w − u) f̂(u) du

= −
iw
2p

(p̂ f f̂)(w)

= − iw(f · p5)(w). (88)

Step 2. The integral part of A;
Using (9) we have

(Jj)(x)=F
.

−.

(j(x+u) − j(x)) l(du)

=F
.

−.

(exp{iw(x+y)} − exp{iwx}) l(du)

= − F
.

−.

(1 − exp{iwy}) l(du) · exp{iwx}

= − Y(w) · exp{iwx}, (89)
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and hence, using (14) together with basic Fourier analysis, we obtain

OJj, pP= − Y(w) · p̂(w)

=iwL̂(w) · p̂(w)

=iw(L f p5 )(w). (90)

Step 3. The infinitesimal generator A;
Combining (88) and (90) together yields

OAj, pP=ODj, pP+OJj, pP

= − iw(f · p − L f p5 )(w), (91)

and hence

OAj, pP=
5

1 “

“x
(f · p − L f p)2 (w)

=7j,
“

“x
(f · p − L f p)8

=Oj, AgpP. (92)

Step 4. Proof of Theorems 1 and 2;
Since the choice of the exponential j was arbitrary, (92) holds for all

exponential functions, and hence for all trigonometric polynomials. This, in
turn, implies that the adjoint operator Ag is given by

Agp=
“

“x
(f · p − L f p),

which proves Theorem 1.
The pdf p is a stationary pdf for the system (2) if and only if

OAf, pP=0 for all trigonometric polynomials f. Since the family of expo-
nentials spans the linear space of trigonometric polynomials, it follows
from (91) that p is a stationary if and only if (f · p − L f p5 )(w)=0, -w.
Hence, p is a stationary if and only if

f · p=L f p,

which proves Theorem 2. L
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